首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5742篇
  免费   1049篇
  国内免费   865篇
航空   4175篇
航天技术   1326篇
综合类   721篇
航天   1434篇
  2024年   18篇
  2023年   162篇
  2022年   206篇
  2021年   276篇
  2020年   275篇
  2019年   240篇
  2018年   268篇
  2017年   284篇
  2016年   344篇
  2015年   277篇
  2014年   440篇
  2013年   334篇
  2012年   420篇
  2011年   449篇
  2010年   319篇
  2009年   319篇
  2008年   369篇
  2007年   385篇
  2006年   361篇
  2005年   290篇
  2004年   281篇
  2003年   205篇
  2002年   158篇
  2001年   143篇
  2000年   135篇
  1999年   115篇
  1998年   117篇
  1997年   84篇
  1996年   50篇
  1995年   54篇
  1994年   53篇
  1993年   46篇
  1992年   40篇
  1991年   32篇
  1990年   37篇
  1989年   36篇
  1988年   20篇
  1987年   3篇
  1986年   3篇
  1984年   8篇
排序方式: 共有7656条查询结果,搜索用时 31 毫秒
1.
The BeiDou global navigation satellite system (BDS-3) has established the Ka-band inter-satellite link (ISL) to realize a two-way ranging function between satellites, which provides a new observation technology for the orbit determination of BDS-3 satellites. Therefore, this study presents a BDS satellite orbit determination model based on ground tracking station (GTS) observations and ISL ranging observations firstly to analyze the impact of the ISL ranging observations on the orbit determination of BDS-3 satellites. Subsequently, considering the data fusion processing, the variance component estimation (VCE) algorithm is applied to the parameter estimation process of the satellite orbit determination. Finally, using the measured data from China’s regional GTS observations and BDS-3 ISL ranging observations, the effects of ISL ranging observations on the orbit determination accuracy of BDS-3 satellites are analyzed. Moreover, the impact of the VCE algorithm on the fusion data processing is evaluated from the aspects of orbit determination accuracy, Ka-band hardware delay parameter stability, and ISL ranging observation residuals. The results show that for China’s regional GTSs, the addition of BDS-3 ISL ranging observations can significantly improve the orbit determination accuracy of BDS-3 satellites. The observed orbit determination accuracy of satellite radial component is improved from 48 cm to 4.1 cm. In addition, when the initial weight ratio between GTS observations and ISL ranging observations is not appropriate, the various indicators which include orbit determination accuracy, ISL hardware delay, and ISL observation residuals were observed to have improved after the adjustment of the VCE algorithm. These results validate the effectiveness of the VCE algorithm for the fusion data processing of the GTS observations and ISL ranging observations.  相似文献   
2.
In recent years, land surface temperature (LST) has become critical in environmental studies and earth science. Remote sensing technology enables spatiotemporal monitoring of this parameter on large scales. This parameter can be estimated by satellite images with at least one thermal band. Sentinel-3 SLSTR data provide LST products with a spatial resolution of 1 km. In this research, direct and indirect validation procedures were employed to evaluate the Sentinel-3 SLSTR LST products over the study area in different seasons from 2018 to 2019. The validation method was based on the absolute (direct) evaluation of this product with field data and comparison (indirect) evaluation with the MODIS LST product and the estimated LST using the non-linear split-window (NSW) algorithm. Also, two emissivity estimation methods, (1) NDVI thresholding method (NDVI-THM) and (2) classification-based emissivity method (CBEM), were used to estimate the LST using the NSW method according to the two thermal bands of Sentinel-3 images. Then, the accuracy of these methods in estimating LST was evaluated using field data and temporal changes of vegetation, which the NDVI-THM method generated better results. For indirect evaluation between the Sentinel-3 LST product, MODIS LST product, and LST estimated using NSW, four filters based on spatial and temporal separates between pairs of pixels and pixel quality were used to ensure the accuracy and consistency of the compared pairs of a pixel. In general, the accuracy results of the LST products of MODIS and Sentinel-3, and LST estimated using NSW showed a similar trend for LST changes during the seasons. With respect to the two absolute and comparative validations for the Sentinel-3 LST products, summer with the highest values of bias (?1.24 K), standard deviation (StDv = 2.66 K), and RMSE (2.43 K), and winter with the lowest ones (bias of 0.14 K, StDv of 1.13 K, and RMSE of 1.12 K) provided the worst and best results for the seasons in the period of 2018–2019, respectively. According to both absolute and comparative evaluation results, the Sentinel-3 SLSTR LST products provided reliable results for all seasons on a large temporal and spatial scale over our studied area.  相似文献   
3.
Mega wildfires are one of the environmental disasters worldwide. This study evaluates the pre-fire species diversity and the indirect effects, including habitat loss for one of the largest wildfires in Manavgat (Antalya-Turkey) in 2021, with a two-step methodology. Here, (1) burnt areas in the Manavgat district (2021) were detected with remote sensing data from Sentinel-2A by delta Normalized Burn Ratio calculation for a selected area in Google Earth Engine, and (2) mammals' habitat vector data of International Union for Conservation of Nature (IUCN) Red List were integrated into Habitat and Biodiversity modelling of Terrset to analyze the alpha, beta, gamma diversity and Range Restriction Index for the wildfire region. In the total 4210 km2 study area, 696 km2 of the area was damaged by different fire severity; also, there were 56 mammal species' habitats here. These species include bats (i.e. Nyctalus leisleri), felids (i.e. Felis chaus), rodents (i.e. Rattus norvegicus) and large mammals (i.e. Ursus arctos). 88 % of these species are in IUCN's Least Concern category. The remaining classes are Near Threatened (3.7 %) and Vulnerable (7.4 %). This study also indicated that the burnt area's species richness does not totally consist of endemic species. Therefore, pre-fire species richness analyses of this study can be a base for further studies about the species' post-fire activity and occupancy.Furthermore, the 2021 mega wildfires show us the necessity of wildfire monitoring and risk studies in the entire Mediterranean ecosystem to evaluate the risks to the Sustainable Development Goals. Therefore, post-fire spatial data, fire migration monitorization, and recording of the species' activities should be performed temporally. In this way, the ability of wildlife's recovering, and the direct and indirect effects of the fire will be examined for ecosystems in the long term.  相似文献   
4.
针对数量有限的物理跑车试验无法满足减振与保温性能测试需求的问题,提出一套航天器运输包装箱动力学与热学仿真验证方法,包括:建立适用于包装箱系统的刚柔耦合多体动力学系统,通过结合线路条件测试生成的动力学系统外部激励,实现减振性能虚拟跑车测试;建立基于计算流体力学的包装箱热学模型,通过模拟自然对流和空调控制,实现包装箱保温性能虚拟跑车测试;基于C/S架构和导航式流程设计思想,建立航天器运输包装箱仿真验证平台,通过实际案例证明该平台仿真结果与实际跑车测试数据具有较高的一致性。  相似文献   
5.
Existing amplitude scintillation prediction models often perform less satisfactorily when deployed outside the regions where they were formulated. This necessitates the need to evaluate the performance of scintillation models developed in one region using data data from other regions while documenting their relative errors. Due to its variation with elevation angle, frequency, other link parameters and meteorological factors, we employed three years (January 2016 to December 2018) of concurrently measured satellite radio beacons and tropospheric weather parameters to develop a location-based amplitude scintillation prediction model over the Earth-space path of Akure (7.17oN, 5.18oE), South-western Nigeria. The satellite beacon measurement used Tektronix Y400 NetTek Analyzer at 1 s integration time while meteorological parameters, namely; temperature, pressure and relative humidity were measured using Davis Vantage Vue weather station at 1 min integration time. Comparative study of the model’s performance with nine (9) existing scintillation prediction models indicates that the best and worst performing models, in terms of root mean square error (RMSE), are the Statistical Temperature and Refractivity (STN) and direct physical and statistical prediction (DPSP) models with values 11.48 and 51.03 respectively. Also, worst month analysis indicates that April, with respective enhancement and fade values of 0.88 and 0.90 dB for 0.01% exceedance, is the overall worst calendar month for amplitude scintillation.  相似文献   
6.
Small space robots have the potential to revolutionise space exploration by facilitating the on-orbit assembly of infrastructure, in shorter time scales, at reduced costs. Their commercial appeal will be further improved if such a system is also capable of performing on-orbit servicing missions, in line with the current drive to limit space debris and prolong the lifetime of satellites already in orbit. Whilst there have been a limited number of successful demonstrations of technologies capable of these on-orbit operations, the systems remain large and bespoke. The recent surge in small satellite technologies is changing the economics of space and in the near future, downsizing a space robot might become be a viable option with a host of benefits. This industry wide shift means some of the technologies for use with a downsized space robot, such as power and communication subsystems, now exist. However, there are still dynamic and control issues that need to be overcome before a downsized space robot can be capable of undertaking useful missions. This paper first outlines these issues, before analyzing the effect of downsizing a system on its operational capability. Therefore presenting the smallest controllable system such that the benefits of a small space robot can be achieved with current technologies. The sizing of the base spacecraft and manipulator are addressed here. The design presented consists of a 3 link, 6 degrees of freedom robotic manipulator mounted on a 12U form factor satellite. The feasibility of this 12U space robot was evaluated in simulation and the in-depth results presented here support the hypothesis that a small space robot is a viable solution for in-orbit operations.  相似文献   
7.
《中国航空学报》2020,33(12):3206-3219
Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength. Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions, especially for a tiny Flapping-wing Micro Aerial Vehicle (FMAV) transmission system manufactured by 3D printing. In this paper, experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system. First, the constitutive behavior of the ultraviolet (UV) curable resin used in fabrication was evaluated. Second, a numerical computation model describing further verified via experiments. Topology optimization modeling considering nonlinear factors, e.g. contact, friction and collision, was presented, and the optimization results were verified by both dynamic simulation and experiments. Finally, detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization. Our methods and results presented in this paper may shed light on the lightweight design of a FMAV.  相似文献   
8.
Mode decision-maker is a critical component in the logic-based Integrated Estimation and Guidance(IEG) system. For the best possible estimation and guidance performance, the mode decision delay of the mode decision-maker should be limited to a range as small as possible. This paper presents a numerical method for computing the maximal admissible mode decision delay that varies with time-to-go. Particular attention has been paid to highly maneuvering target interception in terminal guidance. The results of this research offer useful guidelines for the design of the mode decision-maker in IEG systems.  相似文献   
9.
Solar Radiation Pressure (SRP) is the dominant non-gravitational perturbation for GNSS (Global Navigation Satellite System) satellites. In the absence of precise surface models, the Empirical CODE Orbit Models (ECOM, ECOM2) are widely used in GNSS satellite orbit determination. Based on previous studies, the use of an a priori box-wing model enhances the ECOM model, especially if the spacecraft is a stretched body satellite. However, so far not all the GNSS system providers have published their metadata. To ensure a precise use of the a priori box-wing model, we estimate the optical parameters of all the Galileo, BeiDou-2, and QZS-1 (Quasi Zenith Satellite System) satellites based on the physical processes from SRP to acceleration. Validation using orbit prediction proves that the adjusted parameters of Galileo and QZS-1 satellites exhibit almost the same performance as the corresponding published and “best guess” values. Whereas, the estimated parameters of BeiDou-2 satellites demonstrate an improvement of more than 60% over the initial “guess” values. The resulting optical parameters of all the satellites are introduced into an a priori box-wing model, which is jointly used with ECOM and ECOM2 model in the orbit determination. Results show that the pure ECOM2 model exhibits better performance than the pure ECOM model for Galileo, BeiDou-2 GEO and QZS-1 orbits. Combined with the a priori box-wing model the ECOM model (ECOM+BW) results in the best Galileo, BeiDou-2 GEO and QZS-1 orbits. The standard deviation (STD) of satellite laser ranging residuals reduce by about 20% and 5% with respect to the pure ECOM2 model for Galileo and BeiDou-2 GEO orbits, while the reductions are about 40% and 60% for QZS-1 orbits in yaw-steering and orbit-normal mode respectively. BeiDou-2 IGSO and MEO satellite orbits do not benefit much from the a priori box-wing model. In summary, we suggest setting up a unified SRP model of ECOM+BW for Galileo, QZS-1, and BeiDou-2 orbits based on the adjusted metadata. In addition, we estimate the optical parameters of BeiDou-3e and QZS-2 satellites using a limited number of tracking stations. Results regarding the unified SRP model indicate the same advantages, the STD of satellite laser ranging residuals reduces by about 30% and 20% for QZS-2 and BeiDou-3e orbits respectively over orbit products without a priori model. The estimation procedure is effective and easy to apply to the new emerging satellites in the future.  相似文献   
10.
The vertical ionospheric TEC values obtained from GAGAN grid based ionospheric delay correction values over the sea in the Indian equatorial region have been compared with the corresponding values derived from the International Reference Ionosphere model, IRI-2016. The objective of this work is to study the deviation of the vertical TEC derived from the IRI model from ground truths over the sea for different conditions. This will serve the basic intention of assessing the candidature of the IRI model as an alternative ionospheric correction model in navigation receivers in terms of accuracy. We have chosen different solar activity periods, seasons, geomagnetic conditions, locations etc. for our comparison and analysis. The TEC values by the IRI-2016 were compared with the actual measured values for the given conditions and errors were obtained. The measured vertical TEC values at the ionospheric grid points were derived from the GAGAN broadcast ionospheric delay data and used as reference. The IRI model with standard internal functions was used in estimating the TEC at the same ionospheric grid points. The errors in the model derived values are statistically analysed. Broadly, the results show that, for the Indian sector over the sea, the IRI model performs better on quiet days in off equatorial regions, particularly in the northern region. The overall performance degrades for other conditions with the model generally underestimating the true TEC values and most severely in the equatorial region. The performance is worst in this region for the disturbed days of the equinoctial period. The comparison study is also done with the TEC data measured directly by dual frequency GPS receivers. The results were found to be in general agreement with those obtained by comparing the model with GAGAN broadcast data as reference. This study will be useful in considering the IRI-2016 model for real time estimates of TEC as an alternative to the current parametric model in a satellite navigation receiver in absence of other options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号